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General Variance Formula 

Log and VLog Transforms 

Figure 1. Log Transform: The longstanding utility of the log transform is primarily due 
to its ability to stabilize a set of population gain-dependent variabilities. The 
increased dynamic range associated with the transform is really a useful side-effect 
of this stabilizing capability.  If the variability of measurements is only determined by 
the equation, 
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The general topic of creating log-like transforms that admit zero or negative numbers has been well 

explored in other scientific disciplines since 1949 (1-11).  In 2002 Parks et al. were the first cytometrists 

to investigate the general form of the hyperbolic sine function as a potential solution to the problem 

(12) and then later published their “Logicle” transform in 2006 (13) and revised it slightly in 2012 (14).  

HyperLog is also a log-like transform that accepts zero or negative valued numbers and was published in 

2005 (15). Both transform implementations are functions that tend to be linear through the origin and 

logarithmic away from the origin. Although there has been general acceptance of log-like transforms 

and their application to cytometry data, the detailed implementations are often not trivial, many times 

involving numerical root finding routines. 

A detailed analysis of cytometric measurement sources of variance is also well-described in the 

literature (16-21).  There are three basic components of measurement variance: 1) gain-dependent 

variability, 2) photo-electron counting error, and 3) signal-independent sources of error.  Gain-

dependent variability has the general characteristic that measurement uncertainty is proportional to the 

gain applied to a specific signal.  The gain can be either biologic or electronic in nature.  The 

proportionality constant, coefficient of variation (cv), typically characterizes this type of variability.   

For fluorescence-based cytometers, while a cell is bathed in laser light, fluorochromes, frequently 

attached to antibodies, will emit and re-emit fluorescence photons in all directions numerous times.  A 

relatively small fraction of these photons are detected and converted to photo-electrons by detectors 

such as photo-multiplier tubes (pmts).  The counting error associated with these captured photo-

electrons is typically assumed to be Poisson-distributed.  

The third source of measurement variability is from a number of sources.  Some of this variability is due 

to the counting error associated with non-signal photo-electrons, which includes sources such as 

ambient light, light-scatter, and Raman scattering.  However, the major sources of signal-independent 

variability are due to cellular autofluorescence, compensated secondary detector counting error, and 

the implicit wobble associated with base-line restore algorithms.   

The purpose of this study is to present and examine a data transform that was designed to stabilize the 
variability from all three sources.  This transform, VLog, not only has efficient closed form solutions, but 
also can be enhanced such that its parameters rarely have to be recomputed with different data sets. 
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Figure 2. General Variance Formula: For fluorescence-based cytometers, while a cell is 
bathed in laser light, fluorochromes emit and re-emit fluorescence photons in all directions 
numerous times (103-109, see A).  A relatively small fraction of these photons (e.g. 0.01) 
ultimately are captured and typically produce a specific number of photo-electrons at the 
primary detector (see B).  Some of these captured photo-electrons are from the 
fluorochrome of interest (ns, see blue spheres) and some are not (nb, see red spheres).  
The non-signal photo-electrons are generated from a wide variety of sources, where the 
major source is usually the particle’s background fluorescence.  Generally, these non-signal 
photons are grouped together and symbolized as nb (see B and C). 
 
The variance of the number of captured photon-electrons, Vc(nc) is predicted by the 
Poisson Distribution as equal to ns + nb (see C). These captured photo-electrons will 
eventually be amplified and digitized to form x ADC units.  If this process is linear, then 
there will be a proportionality constant, qc, that can convert number of captured photo-
electrons to x ADC units (see C). By substitution, the counting variance of x is therefore 
given as Vc(nc/qc) which can be simplified to x/qc (see D).  There are also a number of x-
independent sources of variability that can be grouped together as Vb=b2. 
 
The major source of variability in measurement systems like cytometry are gain-
dependent (biological and electronic) and are generally characterized by the coefficient of 
variation or cv. The variance due to cv, Vcv, is approximately equal to cv2*x2 (see D).  The 
total variance associated with x is the summation of these three variances and is given by 
formula shown in panel D’s black box with yellow highlight.  Note that the cv variance 
increases with the square of x and therefore is the dominant variance, the count-
dependent variance increases linearly with x, and the background variance is independent 
of x.  The standard deviation or sigma function is the square-root of the variance (see 
bottom of D). 
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Panels A, B, and C show the linear data from populations with standard deviations 

(sd’s) determined solely by Eq.1 (see Gain-dependent populations in M&M).  Panel 

A shows each event’s intensity value plotted against event index and Panel B shows 

the associated frequency histograms.  Because of the linear increasing sd’s over a 

large dynamic range (see Panel C) only two populations are adequately represented 

in the linear domain. 

Panels D, E, and F show the log transformed data using Eq. 2.  Each transformed sd is 

relatively uniform with values very close to unity (see  Panel F). 

Figure3. Base Vlog Transform: Measurement uncertainties that follow the general 

variance formula  (see Figure 2) can be stabilized by finding the integral of, 

  2 2 2

1 1
.

; , ,c

c

x cv q b x
cv x b

q




 

As shown in Figure 3, the solution is in closed form. The integral formula is then re-

parameterized to eliminate cv from the ln function argument, translocated to z=0 at x=0, 

and then made symmetric about the z=0 axis. The shape-dependent parameters are α and 

β.  Interestingly, when β>0 and α=0, the transform behaves as the hyperbolic sine. 
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Log Transform 

Figure 4. Log and VLog Transforms: Panels A, B, and C show the Log Transform of the 

linear data from populations with standard deviations (sd’s) determined by the 

general variance formula (see General Variances for Synthesized Populations in 

M&M).  Panel A shows each event’s Log transformed intensity value plotted against 

event index and Panel B shows the associated frequency histograms.  Because the Log 

Transform only stabilizes the gain-dependent portion of the total variance, the sd’s 

increase with lower intensity values (see Panel C for enumerated sd’s). 

Panels D, E, and F show the transformed data using the VLog .  Each transformed sd is 

relatively uniform with values very close to unity (see  Panel F). 
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The second four gain-dependent populations were synthesized as, 

 

Figure 5. Normalization, Quantitation, and Validation: Panel A shows the 

formulation of VLog that is normalized such that at x=xmax, the transform is at z=zmax 

and at x=–xmax, z=-zmax.   The variable tmax only needs to be evaluated once for a 

specific set of parameters. Panel B shows the additional changes necessary to 

support quantitative axes.  The bottom of Panel B demonstrates how to standardize 

the transform to a specific number of decades, d, that better reflects the true 

dynamic range in the data. Panels C and D demonstrate the important application of 

defining a particular number of decades to light-scatter measurements that typically 

contain a low number of decades of information.  Panels E and F show some 

validation equations for those interested in implementing the VLog transforms. 

6 Normalization, Quantitation, and Validation 

Figure 6. Examples:  The example surface plots shown in this figure come from a repository of files from a 

published study (22) and from Helios data described in another presentation (23). Colors are blended from 

probabilistically defined stages during GemStone modeling .  All the transforms used had the same 

parameters: α=0, β=10, d=4.  In some cases only a portion of the scale is showing due to automatic zooming 

logic. 

Log and Log-Like transforms for cytometry are variable-sloped functions that tend to 

stabilize variances to better enable population visualization and analysis.  Most all these 

variances are described by a general variance formula (see Figure 2) that blends gain-

dependent, counting-error, and signal-independent variabilities.  The log transform only 

partially stabilizes the gain-dependent variances, which is why cytometrically-derived 

population variances tend to increase with lower intensities.  Also, because the log 

transform is not defined for zero and less than zero values, serious distortions can occur 

near the origin that can lead to inappropriate conclusions about the true nature of the 

data.   

By numerically integrating the general variance formula’s reciprocal, a transform called 

VLog can be derived and mathematically represented in efficient closed-form equations 

(see Figures 3 and 5).  The relative simplicity of these equations along with their generality 

potentially make VLog a useful tool for cytometry and possibly other technologies.   

Software engineers interested in exploring VLog’s capabilities are free to do so.  Validation 

equations have been added in Figure 6 to help with these implementations.  

Enhancing the transform to include the capability of supporting quantitative axes also 

solves an increasingly problematic issue with cytometry displays.  As the ADC maximum 

ranges have increased over time, many cytometer display systems have also increased the 

number of decades displayed on their axes.  Rather than considering the ADC max range as 

the source for number of decades, the quantitative system enables the user to 

approximate the number of measureable decades of information encoded in the data.  For 

immunofluorescence measurements, typically four to five decades are all that are needed; 

however, for light-scatter measurements only 1.5 to 2 decades are normally required.  By 

matching the number of decades to the biology rather than the electronics, different 

cytometers with different ADC max ranges can be made to produce similar distributions.  

Figure 6 amplifies this point by demonstrating that different markers and different types 

of cytometers can produce very similar data patterns with exactly the same transform 

setup parameters. 

Discussion 
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Examples 

Typically, the magnitude of a measurement’s uncertainty is proportional to the magnitude of the signal.  The 

proportionality constant that relates uncertainties to signal magnitudes is coefficient of variation or cv and is given 

by the simple equation, sd = cv*x where x is the magnitude of the measurement and sd is its uncertainty or standard 

deviation.  Because biologic signals have ranges that span four to five decades, the uncertainties of population 

measurements also span many decades. If you wanted to design a seemingly perfect transformation for cytometry 

where the linearly increasing sd’s would be converted to uniform sd’s, you would find a function whose slope at each 

x value would be 1/x. This function is the well-known log function, z=log(x), and has been routinely employed for 

many years to enable the visualization of cytometrically-derived cellular populations.      

The primary problem with log transforms is that they are not defined for signals that are less than or equal to zero 

due to the 1/x slope not being defined at x=0.  Unfortunately, most signal un-mixing and base-line restore algorithms 

can create zero or less than zero numbers.  Truncating these negative signals to the first channel of display systems 

has created numerous issues for cytometry - the worst being a strong tendency to over compensate data. In 2002 

Parks and Moore described a generalized hyperbolic sine function that was log-like at higher signal intensities and 

linear-like through the origin. Since then, there have been a number of other log-like transforms that have been 

published or described in earlier literature.  Many of these transforms are quite complex and present challenges to 

software implementers. 

This study examines a simple log-like transform that is very easy to implement and that has the desirable attributes 
of being log-like at higher intensities and linear-like through the origin. The arguments to the transform are 1) 
number of desired decades, 2) a scale-independent coefficient that determines the slope through zero, 3) desired 
maximum transform range, and 4) the maximum linear range.  Implementers are free to use and modify this 
transform if they don’t have access to other more complex transformation systems. 

Mathematical Data Simulations: Mathematical analysis and presentation graphics were done using 

Mathcad 15.0, Parametric Technology Corporation (PTC), Needham, MA, USA. 

Normally distributed random numbers were generated with the Box-Muller equation, 
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Gain-dependent Variances for Synthesized Populations: 

The first four gain-dependent populations were synthesized as shown below, 
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The second four gain-dependent populations were synthesized as, 
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These data were used in Figure 1 to demonstrate the general utility of the log transform. 

General Variances for Synthesized Populations: 

The eight populations shown in Figure 4 were synthesized as shown below, 
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These data were used in Figure 4 to demonstrate the incompleteness of the Log Transform and the 

efficacy of the VLog Transform. 

Data Sets: the files represented in Figure 6 mainly come from a repository of files from a published 

study (22) and from Helios data described in another presentation (23). 
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