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� Abstract
The fundamental purpose of log and log-like transforms for cytometry is to
make measured population variabilities as uniform as possible. The long-standing
success of the log transform was its ability to stabilize linearly increasing gain-
dependent uncertainties and the success of the log-like transforms is that they
extend this notion to include zero and negative measurement values. This study
derives and examines a transform called VLog that stabilizes the three general
sources of variability: (1) gain-dependent variability, (2) photo-electron counting
error, and (3) signal-independent sources of error. Somewhat surprisingly, this
transform has a closed-form solution and therefore is relatively simple to imple-
ment. By including some quantitation elements in its formulation, the shape-
dependent arguments, a and b, usually do not require optimization for different
datasets. The simplicity and generality of the transform may make it a useful
tool for cytometry and possibly other technologies. VC 2016 International Society for

Advancement of Cytometry

� Key terms
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THE general topic of creating log-like transforms that admit zero or negative num-

bers has been well-explored in other scientific disciplines since 1949 (1–11). In 2002

Parks et al. were the first cytometrists to investigate the general form of the hyperbol-

ic sine function as a potential solution to the problem (12) and then later published

their “Logicle” transform in 2006 (13) and revised it slightly in 2012 (14). HyperLog

is also a log-like transform that accepts zero or negative valued numbers and was

published in 2005 (15). Both transform implementations are functions that tend to

be linear through the origin and logarithmic away from the origin. Although there

has been general acceptance of log-like transforms and their application to cytometry

data, the detailed implementations are often not trivial, many times involving

numerical root finding routines.

A detailed analysis of cytometric measurement sources of variance is also well-

described in the literature (16–21). A signal in this context is a set of detected pho-

tons emitted from a specific molecular structure that is to be quantified as a mea-

surement. There are three basic components of measurement variability: (1) gain-

dependent, (2) photo-electron counting, and (3) signal-independent. Gain-depen-

dent variability has the general characteristic that measurement uncertainty is pro-

portional to the gain applied to a specific signal whether it be biologic or electronic

in nature. The proportionality constant, coefficient of variation (cv), typically char-

acterizes this type of variability. The variance of this type of variability increases with

the square of measurement intensity.
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For fluorescence-based cytometers, photons that are

detected and converted to photo-electrons by detectors such

as photo-multiplier tubes (pmts) have a Poisson-distributed

counting error. The variance of this type of variability

increases linearly with measurement intensity.

The third source of measurement variability is from a

number of sources. Some of this variability is due to the

counting error associated with nonsignal photo-electrons,

which includes sources such as ambient light, light-scatter,

Raman scattering, and other signals inappropriately detected.

However, the major sources of signal-independent variability

are due to cellular autofluorescence and the variability associ-

ated with base-line restore peak-detection algorithms. The

variance of this type of variability is constant and does not

vary with measurement intensity.

The purpose of this study is to present and examine a

data transform that was designed to stabilize the variability

from all three sources. This transform, VLog, not only has effi-

cient closed-form solutions, but also can be enhanced such

that its parameters rarely have to be recomputed with differ-

ent datasets.

MATERIAL AND METHODS

Mathematical Data Simulations

Mathematical analysis and presentation graphics were

done using Mathcad 15.0, Parametric Technology Corpora-

tion (PTC), Needham, MA.

Normally distributed random numbers were generated

with the Box–Muller equation,

Normðl; dÞ5l1d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22ln ðrndð1ÞÞ

p
cos ð2p � rndð1ÞÞ:

Gain-Dependent Variances for Synthesized

Populations:

The first four gain-dependent populations were synthe-

sized as shown below,

Xi;g 5Normðl; dÞ � Gg ;

where; l550; d55; n51; 000;

i51; 2; . . . ; n; g51; 2; . . . ; 4;

Gg 5g :

Notice that the gains have relatively low amplitude (1, 2, . . .,

4). The second four gain-dependent populations were synthe-

sized as,

Xi;41g 5Normðl; dÞ � Gg ;

where; g51; 2; . . . ; 4;

Gg 510g :

Note that these gains have high amplitudes (101, 102, . . ., 104).

These data were used in Figure 1 to demonstrate the general

utility of the log transform.

General Variances for Synthesized Populations:

The eight populations shown in Figure 3 were synthe-

sized as shown below,

X2i;g 5Norm Mg ; d Mg ; cv; qc ; b
� �� �

;

where; d x; cv; qc ; bð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2x21

x

qc

1b2;

r
g51; 2; . . . ; 8;

MT 5 10 50 150 400 1000 2800 8000 17000½ �;

cv50:03; qc50:6; n51; 000; b56:0; i51; 2; . . . ; n:

These data were used in Figure 3 to demonstrate the incom-

pleteness of the Log Transform and the efficacy of the VLog

Transform.

DataSets

The files represented in Figure 5 mainly come from a

repository of files from a published study (22) and from

Helios data described in another presentation (23).

Statistics

The formulae for the statistics mean, l, variance, r2, standard

deviation, r, and coefficient of variation, cv, are shown below:

l5

Pn
i51 xi

n
; d25

Pn
i51 xi2meanð Þ2

n21
; d5

ffiffiffiffiffi
d2

p
; cv5

d
l

Nomenclature and Abbreviations:

Typically variance is written as r2 and the variance func-

tion as Var. For mathematical brevity, the variance function

will be shortened to capital V.

ADC: Analog to Digital Converter.

Derivation of the General Variance Formula:

For fluorescence-based cytometers, while a cell is bathed

in laser light, fluorochromes emit and re-emit fluorescence

photons in all directions numerous times (103–109, see Fig. 1,

Panel A). A relatively small fraction of these photons (e.g.,

0.01) ultimately are detected and typically produce a specific

number of photo-electrons at the primary detector (see Panel

Figure 1. General Variance Formula: For fluorescence-based

cytometers, while a cell is bathed in laser light, fluorochromes

emit and re-emit fluorescence photons in all directions numerous

times (103–109, see Panel A). A relatively small fraction of these

photons (e.g., 0.01) ultimately are detected and typically produce

a specific number of photo-electrons at the primary detector (see

Panel B). Some of these generated photo-electrons are from the

fluorochrome of interest (ns, see blue spheres) and some are not

(nb, see red spheres). The nonsignal photo-electrons are generat-

ed from a wide variety of sources, where the major source

is usually the particle’s background fluorescence. [Color figure

can be viewed in the online issue which is available at

wileyonlinelibrary.com]
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B). Some of these generated photo-electrons are from

the fluorochrome of interest (ns, see blue spheres in Panel B)

and some are not (nb, see red spheres in Panel B). These

nonsignal photons can be grouped together and symbolized

as nb.

The variance of the total number of generated photon-

electrons, Vc, is predicted by the Poisson Distribution as equal

to ns 1 nb and is often referred to as counting error,

Vc ntð Þ5ns1nb: (1)

These photo-electrons will eventually be amplified and digitized

to form a measurement value in ADC units. If this process is

linear, then there will be a proportionality constant, qx, that

converts number of generated photo-electrons to x ADC units.

qx5
generated photo-electrons

ADC unit
; (2)

Therefore, the equation for x ADC units is given as,

x5
nt

qx

: (3)

Substituting Eq. (3) into Eq. (1) yields the variance for count-

ing error,

Vc xð Þ5Vc
1

qx

� nt

� �
5

1

q2
x

Vc ntð Þ5
nt

q2
x

5
qxx

qx
2

5
x

qx

: (4)

Note that the variance of nt times the constant 1/qx is 1/qx

squared times the variance of nt. There are also a number of

signal-independent sources of variability that can be grouped

together as Vb 5 b2.

However, the major source of variability in measurement

systems like cytometry are gain-dependent (biological and elec-

tronic) and are generally characterized by the coefficient of vari-

ation or cv. The variance due to cv, Vcv, is approximately,

Vcv xð Þ ’ cv2x2: (5)

Thus, the total variance for the measurement value x is given as,

Vx xð Þ5Vcv xð Þ1Vc xð Þ1Vb5cv2x21
x

qx

1b2; (6)

and the standard deviation function is the square-root of the

variance or,

d x; cv; qx; bð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2x21

x

qx

1b2

r
: (7)

Note that the cv variance increases with the square of x and

therefore is the dominant variance, the count-dependent vari-

ance increases linearly with x, and the background variance is

independent of x. The basic assumption made with Eqs. (6)

and (7) is that the three types of variabilities are independent of

each other and therefore the variances can be added together.

RESULTS

Log Base Transform

The longstanding utility of the log transform is primarily

due to its ability to stabilize a set of population gain-

dependent variabilities. The increased dynamic range associat-

ed with the transform is really a useful side-effect of this stabi-

lizing capability. If the overall measurement variability were

only determined by the equation,

dðx; cvÞ5cv � x:

where; d5standard deviation;

cv5coefficient of variation:

(8)

then, the log function would be the transform of choice since,

zðx; cvÞ5
ðx
1

1

cv � t dt5
1

cv
� ln ðxÞ; x > 0: (9)

When multiple populations are synthesized over a wide

dynamic range with standard deviations, sds, determined

solely by Eq. (8) (see Gain-dependent populations in

M&M), linear transforms are usually not adequate for com-

plete visual inspection of all populations. Figure 2, Panels A

and B show the eight population linear data in both dot-

plot and histogram formats where only two or perhaps

three populations can be visualized. The table in Panel C

enumerates the increasing standard deviations for each of

the populations.

Panels D and E show the log transformed data using Eq.

(9). Each of the eight populations are now easily distinguished

because the transformed sds are relatively uniform with values

very close to unity (see Panel F). Transforms that convert stan-

dard deviation functions such as shown in Eq. (8) to a set of

transformed standard deviations near unity will be referred to

as base transforms.

The VLog Transforms

In order to account for the variabilities described by Eq.

(7), we need to find a function with slopes equal to its inverse.

This is done quite easily by simple integration,ð
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cv2x21
x

qx

1b2

r dx5
1

cv
�

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2x21

x

qx

1b2

r
1cv � x1

1

2cv � qx

� �
5z:

(10)

As shown above, the solution can be written in closed-form.

The independent variable is the measurement value, x, and

the dependent variable is the transformed value, z. The inte-

gral formula is then reparameterized to eliminate cv from the

ln function argument, translocated to z 5 0 at x 5 0, and then

made symmetric about the z 5 0 axis yielding the base VLog

transform and inverse transform,

zðx; cv; a;bÞ5 signðxÞ
cv

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21ajxj1b2

q
1jxj1 a

2
a
2

1b

0
B@

1
CA; (11)

Technical Note

Cytometry Part A � 00A: 00�00, 2016 3



xðz; cv; a; bÞ5signðzÞ � a � sinh
cv � z

2

� �2

1b � sinh cv � zð Þ;

(12)

where; a5
1

qxcv2
; b5

b

cv
:

The transform parameters are cv, a, and b. Interestingly, when

a 5 0, the transform behaves as the popular hyperbolic sine type

of transform (see comparison with other transforms for details).

When multiple populations are distributed over a wide

dynamic range with standard deviations determined solely by

Eq. (7) (see general variances for synthesized populations in

M&M), log transforms incompletely stabilize all the variances

and as a result, the sds are higher for the lower-intensity pop-

ulations (see Fig. 3, Panels A, B, and C). However, if the data

are converted with the VLog base transform, the variabilities

are relatively constant and have sds of near unity (see Panels

D, E, and F). This characteristic also has importance for opti-

mally determining cv, a, and b from different datasets (see

Appendix Section).

VLog Normalization

Equations (11) and (12) can be normalized such that at

x 5 xmax, the transform is at z 5 zmax and at x5–xmax, z52zmax.

tmax 5ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmax

21axmax 1b2
p

1xmax 1 a
2

a
2
1b

 !
; (13)

TVLogðx; a;b; xmax ; zmax Þ5signðxÞ � zmax

tmax

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21ajxj1b2

q
1jxj1 a

2
a
2

1b

0
B@

1
CA; (14)

T21
VLogðz; a;b; xmax ; zmax Þ5signðzÞ � a � sinh

z

2
� tmax

zmax

� �2

1b

� sinh z � tmax

zmax

� �
:

(15)

The variable tmax only needs to be evaluated once for a specific

set of parameters.

Quantitation Linear Transform

The only changes to the above formulae to support quanti-

tation are the additions of a slope, qs, and intercept, qi, that con-

vert relative intensity units, x, to absolute quantitation units, q.

q5qs � x1qi; (16)

TVLogðq; a; b; qmax ; zmax Þ; (17)

T21
VLogðz; a;b; qmax ; zmax Þ: (18)

Although quantitation is not yet mainstream in cytometry,

there is one practical utility for this type of extra transforma-

tion. As ADC resolutions of cytometers continue to increase,

their relatively large magnitude is creating some display issues

Figure 2. Log Transform: Panels A, B, and C show the linear data from populations with standard deviations (sds) determined solely by

Eq. (8) (see Gain-dependent populations in M&M). Panel A shows each event’s intensity value plotted against event index and Panel B

shows the associated frequency histograms. Because of the linear increasing sds over a large dynamic range (see Panel C) only two popu-

lations are adequately represented in the linear domain. Panels D, E, and F show the Log transformed data using Eq. (9). Each transformed

sd is relatively uniform with values very close to unity (see Panel F).
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for cytometrists. Some cytometers now have ADC max ranges

of >109. It makes little sense to use nine decades for an axis if

there is only a signal range in the data of four to five decades

(see Fig. 4, Panel A). This issue can be minimized by setting

the VLog’s b coefficient to the background peak’s location

(see Fig. 4, Panel B). However, this approach will necessitate

changing b for data that has different maximum ADC ranges.

A better approach is to approximate the number of decades,

d, implicit in the data and use the above qs and qi slope and

intercepts as shown below,

qmax 510d ; qs5
qmax

xmax

; qi50: (19)

Also, note that the a and b parameters for VLog should be

determined relative to the q quantitation domain rather than

the x ADC domain. This simple procedure results in transforms

that rarely need optimization even when analyzing data from

cytometers that have very different ADC max ranges. Figure 4,

Panel C shows the same data with number of decades, d, equal

to five and a 5 0 and b 5 1. In this display there is little or no

wasted space by inappropriate low-level decades. Other types of

transforms such as HyperLog also can benefit from allowing

the number of decades to be adjusted (see Panel D). However,

when counting error variability is a major source of variability

as it is in this example, the a parameter can be adjusted to sta-

bilize it (see Panels E and F, and Appendix for details).

Linear light-scatter axes for peripheral blood lympho-

cytes, monocytes, and granulocytes also result in increasing

variabilities with increasing intensities, especially for side-

scatter. Figure 5, Panel A shows a typical dot-plot of

peripheral blood with linear transforms for FSC and SSC.

Often by ensuring that the lymphocytes are on scale, a sig-

nificant fraction of granulocytes end up being off scale for

SSC (see white arrow). Panel B shows linear FSC and SSC

where the granulocytes are largely on scale. A better strate-

gy for displaying light-scatter dot-plots is to limit the

number of decades to 1.5 and to use log-like transforms

such as VLog. Panel C shows the same data but with VLog

(b 5 10, a 5 0) for FSC and VLog (b 5 1, a 5 0) for SSC.

If the granulocytes are on scale, the lymphocytes will still

be well-defined. Even when the ADC resolutions change

dramatically, the light-scatter patterns will remain very sim-

ilar (not shown).

Typical cytometry markers have effective dynamic ranges

between four and five decades. The second and third rows in

Figure 5 show a number of examples where it was not neces-

sary to adjust the transforms even between dramatically differ-

ent cytometers like the Helios and BD FACS Diva. Panels D,

E, and F show CCR7 vs. CD45RA, CD28 vs. CD45RA, and

CD28 vs. CCR7 for the Helios mass cytometer and Panels G,

H, and I show the same marker combinations from a BD

FACS Diva fluorescence cytometer. CD8 subpopulations such

Figure 3. Log and VLog Transforms: Panels A, B, and C show the Log Transform of the linear data from populations with standard devia-

tions (sds) determined by the general variance formula (see General Variances for Synthesized Populations in M&M). Panel A shows each

event’s Log transformed intensity value plotted against event index and Panel B shows the associated frequency histograms. Because the

Log Transform only stabilizes the gain-dependent portion of the total variance, the sds increase with lower intensity values (see Panel C

for enumerated sds). Panels D, E, and F show the Log transformed data using the VLog Transform. Each transformed sd is relatively uni-

form with values very close to unity (see Panel F).
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as Na€ıve (blue), central memory (green), and effector memory

(red) are well-defined without the need of adjusting any of the

transform’s parameters.

Comparison with Other Transforms

As aforementioned, if the measurement variability were

described by,

dðx; cvÞ5cv � x;

then, the base transform that would stabilize the variabilities

would be given as,

zðx; cvÞ5 1

cv
� ln ðxÞ; x > 0:

If this measurement variability is augmented to include a

signal-independent background term,

dðx; cv; bÞ5cv � x1b; (20)

then the base transform is given as,

zðx; cv; bÞ5
ð

1

cv � x1b
dx5ln ðcv � x1bÞ; x > 2b

cv
: (21)

Although this transform can be used for cytometry data, the

transforms that follow are more popular.

If the measurement variability is slightly better posed as,

dðx; cv; bÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2 � x21b2
p

; (22)

then the base transform is given as,

zðx; cv; bÞ5
ð

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2x21b2
p dx5

1

cv
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2x21b2
p

1cv � x
� �

:

(23)

This transform is also known as the GLog transform (11)

which is often presented as,

GLog x; kð Þ5log x1
ffiffiffiffiffiffiffiffiffiffiffi
x21k
p� �

:

The reason this transform is not routinely used in cytometry

is probably because it is asymmetric and is not zero when x is

zero. If Eq. (23) is translocated to the origin (z 5 0, x 5 0) and

symmetrized, it becomes,

Figure 4. Transform Comparisons: Panel A shows calibration beads on a Yeti cytometer with over nine decades of ADC resolution. Notice

the wasted space and the increasing uncertainties with lower-intensity populations when presented with a nine-decade Log transform dis-

play. Panel B shows the same data with a VLog transform where b is set to the background peak’s approximate intensity value (105, see

arrow in Panel A) and a is set to zero. Panel C uses the VLog transform with number of decades, d, set to 5 and b 5 1 and a 5 0. The advan-

tage of setting the number of decades to 5 is that this data will look very similar on cytometers with very different ADC max ranges. Panel

D shows the HyperLog transform with similar settings, b 5 10. Panel E shows VLog b 5 1 and a manually set a 5 3,000 and Panel F shows

the optimized VLog parameters, b 5 0.001 and a 5 175.85 (see Appendix for details).
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zðx; cv; bÞ5
ð

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2x21b2
p dx5

1

cv
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv2x21b2
p

1cv � jxj
b

 !
: (24)

The inverse of this equation is given as,

x z; cv; bð Þ5 b

2cv
ecv�z2e2cv�zð Þ5 b

cv
sinh cv � zð Þ; (25)

This popular cytometry transform is known as the bi-

exponential or hyperbolic sine transform. When this trans-

form is generalized to,

x z; a; b; c; d; fð Þ5aeb�z2ced�z1f ; (26)

it is known as the “Logicle” transform (13). Although this

transform is highly flexible, it has no closed-form inverse and

selecting optimal parameters is nontrivial. The HyperLog

transform (see Fig. 4 Panel D) was introduced in 2005 (15) to

reduce the complexity of cytometry log-like transforms by

only having two parameters, a and b, to adjust,

x z; a; bð Þ5signðzÞ � ea�jzj1b � jzj21
� �

: (27)

Figure 5. Typical Examples: Panel A shows a typical dot-plot of peripheral blood with linear transforms for FSC and SSC. Often by ensur-

ing that the lymphocytes are on scale, a significant fraction of granulocytes end up being off scale for linear SSC (see white arrow). Panel

B shows linear FSC and SSC where the granulocytes are largely on scale. A better strategy for displaying light-scatter dot-plots is to limit

the number of decades to 1.5 and to use log-like transforms such as VLog. Panel C shows the same data but with VLog (b 5 10, a 5 0) for

FSC and VLog (b 5 1, a 5 0) for SSC. If the granulocytes are on scale, the lymphocytes will still be well-defined. Even when the ADC resolu-

tions change dramatically, the light-scatter patterns will remain very similar (not shown). Panels D, E, and F show CCR7 vs CD45RA, CD28

vs CD45RA, and CD28 vs CCR7 for the Helios mass cytometer. The same marker combinations in Panels G, H, and I are from a BD FACS

Diva fluorescence cytometer. All transforms were set up identically (VLog b510, a50) even though these cytometers have very different

characteristics and ADC maximum ranges. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]

Technical Note

Cytometry Part A � 00A: 00�00, 2016 7



However, this simple function also does not have an inverse in

closed-form which necessitated using root finding algorithms

and tables for its implementation. Subsequent to the publica-

tion it was found that by leveraging Lambert W functions (24)

the inverse could be put into a form that did not require any

root-finding tables,

z x; a; bð Þ5signðxÞ � 1
a

ln
b

a
� LambertW

a

b
� ea

b
jxj11ð Þ

� �� �
(28)

Validation Data

Table 1 provides some validation data for those that are

interested in implementing the transform.

DISCUSSION

Log and Log-Like transforms for cytometry are variable-

sloped functions that tend to stabilize variances to better enable

population visualization and analysis. Most all these variances

are described by a general variance formula [see Eq. (6)] that

blends gain-dependent, counting-error, and signal-independent

variabilities. The Log transform partially stabilizes the variances

since it only accounts for gain-dependent variabilities, which is

why cytometrically derived population variances tend to

increase with lower intensities (see Fig. 3, Panel B and Fig. 4,

Panel A). Also, because the Log transform is not defined for

zero and less than zero values, serious distortions can occur

near the origin that can lead to inappropriate conclusions

about the true nature of the data. It should be noted that differ-

ent populations normally have different cvs. The synthesized

datasets were contrived to demonstrate how these transforms

theoretically behave with their assumed sources of variance.

By numerically integrating the general variability formula’s

reciprocal [see Eq. (10)], a transform called VLog can be derived

and mathematically represented in efficient closed-form equa-

tions [see Eqs. (11) and (12)]. Enhancing the transform to

include the capability of supporting quantitative axes also solves

an increasingly problematic issue with cytometry displays. As the

ADC maximum ranges have increased over time, many cytome-

ter display systems have also increased the number of decades

displayed on their axes. Rather than considering the ADC max

range as the source for number of decades, the quantitative sys-

tem enables the user to approximate the number of measureable

decades of information encoded in the data. For immunofluo-

rescence measurements, typically four to five decades are all that

are needed; however, for light-scatter measurements only 1.5 to

2 decades are normally required. By matching the number of

decades to the biology rather than to the electronics, different

cytometers with different ADC max ranges can be made to pro-

duce similar distributions. Figure 5 amplifies this point by dem-

onstrating that different markers and different types of

cytometers can produce very similar data patterns with exactly

the same VLog or other transform’s controlling parameters.

Other strategies have been adopted to deal with the high

number of decades issue such as top four-decades and data

zooming. Although these methods can show similar patterns

to those in Figure 5, they are not equivalent. Data zooming

regions will still need adjusting if ADC maximum ranges

change. Also, they do not properly represent events at the

extreme ends of the measurement scale. For example, if the

top five decades were displayed to a user in Figure 4 Panel A,

they would not be aware of the significant number of events

pegged at the true origin of the axis.

One major limitation to VLog and the other mentioned

transforms is the assumption that sources of error are inde-

pendent of each other. This assumption is indeed an approxi-

mation and certainly not true when there is significant signal

crossover between detectors. However, it is a simplification

that is currently necessary in order to keep the equations from

becoming overly complex.

If counting error variability is a significant source of vari-

ability in data as it is for Figure 3, Panel B and Figure 4, Panels

A–D, then the VLog a parameter can be either adjusted manu-

ally (see Fig. 4, Panel E) or automatically (see Panel F) to

make the affected population variances more uniform.

The relative simplicity of the VLog equations along with

their generality potentially makes them a useful tool for

cytometry and possibly other technologies. Software engineers

interested in exploring VLog’s capabilities are free to do so.

Validation results have been added in Table 1 to help with

these implementations.
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APPENDIX

This section describes how to set VLog’s parameters, a
and b, manually and automatically. Using the VLog transform

along with the quantitation mode where the number of deca-

des is set to reasonable values such as 4 to 5 is quite simple.

Usually setting a to 0 and b to 1 or 10 is all that is required for

most files (see Fig. 4, Panel C and Fig. 5, Panels B–I). If you

do wish to adjust these values manually, the b value corre-

sponds to the approximate location of the background peak

and a value can be manually increased to eliminate any low

intensity peak counting error effects (see Fig. 4, Panel E),

although normally this is not necessary.

Software developers who wish to optimize these values

can use the approach discussed below. This approach involves

first identifying the background population peak and at least

two positive peaks. Figure 4, Panel F shows an example where

all eight populations were initially identified with ranges on

unoptimized transformed data such as shown in Figure 4,

Panel C. Once the peaks are identified, the untransformed

means and variances of each of the peaks are enumerated (see

Table A1, columns 1 and 2). The variance equation shown in

Eq. (6) can be used to estimate the cv, a, and b parameters by

performing a least-squares analysis with the quadratic

equation,

Vi5S2Xi;21S1Xi;11S0Xi;0;

where; Xi;25l2
i ; Xi;15li; Xi;051:

(A1)

The vectors, Vi and li, are the observed variances and

means for the peak data shown in Table A1. The solution vec-

tor, S is found by solving the least-square matrix formula,

S5 XT Xð Þ21
XT V ;

cv5
ffiffiffiffiffi
S2

p
; a5

S1

cv2
; b5

ffiffiffiffiffiffiffi
jS0j
cv

r
:

(A2)

The least-squares solution is fairly accurate except for the

intercept, S0. Because the peak mean data are not spaced uni-

formly, there is a tendency for the solution to over-determine

the cv estimate at the sacrifice of the intercept, b. The interest-

ing solution to this problem is to use the base VLog trans-

form, Eq. (11), in an iterative nonlinear least-square analysis

(25) to find an optimal set of parameters; cv, a, and b, that

results in a set of transformed sds that are close to unity. If we

use the least-squares solution as initial estimates and we let

the function, SDZ(i;cv,a,b), return the ith peak’s transformed

sd given these parameters, then the objective function to mini-

mize is given as,

U cv; a; bð Þ5
PnPeaks

i51 SDZ i; cv; a;bð Þ21ð Þ2

nPeaks
: (A3)

The data in the Table A1’s last column show the final trans-

formed sds after this minimization process and Figure 4 Panel

F shows the result of the transform. This procedure is not nor-

mally necessary, but might be valuable if accurate estimates of

cv, a, qx, or b are desired.

Table A1. Optimizing VLog parameters

Peak(i) Mean(li) Var(Vi) SD(ri) SDZ(rzi)

1 0.65 0.12 0.35 1.06

2 5.17 0.77 0.88 0.97

3 13.87 2.21 1.49 0.97

4 41.34 7.63 2.76 0.98

5 104.45 27.22 5.22 1.03

6 289.30 117.14 10.68 0.99

7 813.31 669.42 25.87 0.99

8 1,670.11 2,520.36 50.20 0.99

li, Vi, and ri are the ith peak mean, variance, and standard

deviation in quantitation units from eight peaks, i 5 1..8, in Figure

4, Panel C. rzi are the resultant transformed standard deviations

that are near unity as described in Appendix.
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