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Over the last decade there have been a number of proposed computer algorithms 
to estimate positive cells in immunofluorescence histograms (1,2,3).  A simple 
description of the problem being solved is  
 

“Find the most probable proportions of negative and positive staining 
distributions in a test histogram given only the shape and position of 
the negative distribution.” 

 
The appropriate decomposition of a test histogram into negative and positive 
distributions is show in Figure 1. 
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Figure 1:  Simple decomposition of a test distribution into negative and positive 
distributions. 
 
Although at first glance this problem seems trivial, an exact solution may not ever be 
possible given the limited information available to the analysis routines.  Consider 
the following equivalent solution to the problem shown in Figure 2: 
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Figure 2: Equivalent decomposition of a test distribution into negative and positive 
distributions. 
 
The critical missing piece is the specification for the shape and position of the 
positive distribution.  Because of this limitation, all proposed analysis methods that 
make no assumptions about the positive distribution are approximations, not exact 
solutions.  
 
In our journey through some of these approximations, we will encounter a simple 
approach with egregious sources of errors yielding surprisingly accurate estimates 
and a more refined approach yielding less accurate results.  We will see a routine 
that is really a 60 year old statistical test in disguise which, unbeknownst to its 
Russian inventor, works because it estimates an additional unknown distribution 
such as the positive distribution.  We will discover that many of the seemingly 
diverse proposed methods can be described by a more general theory which 
directly leads to more accurate and robust analytical methods.   
 
Before we begin, we need to discuss how this journey will be organized.  Each 
method will be described by mathematical formulae and evaluated and compared 
by means of an arbitrary example (see Fig. 3).  The estimated positive fraction will 
be shown with its corresponding error.  At the end, the methods will be compared by 
a more thorough simulator that produces histograms of various proportions and 
shape (8). 



Figure 3:  Example data set (pos=0.4). 
 
The formulae will be composed of the symbols summarized in Table 1. 
 
Symbol Definition 

U upper channel in all histograms (e.g. 127) 
L lower boundary, depends on method 
x channel value, ranges between 0 and U 
cx control histogram evaluated at x 
tx test histogram evaluated at x 
px positive histogram evaluated at x 
nx negatives in test histogram evaluated at x 
Cx cumulative control histogram, normalized to range from 0 to 1 at x 
Tx cumulative test histogram, normalized to range from 0 to 1 at x 
Dx difference between Cx and Tx 
Px cumulative positive histogram at x 
xd x channel with maximum absolute difference (i.e. max(D)) 
xd2 Dmax for normalized cumulative control and test in interval 0..xd 
ct total number of events in the control histogram 
tt total number of events in the test histogram 

pos actual positive fraction 
posm estimated positive fraction for method “m” 

ε error, defined as (calculated-actual)*100/actual. 
 

Table 1:  Summary of all mathematical symbol definitions. 
 
 
Scenic View 1: Integration Method (posi) 
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The lower boundary of integration, L, is normally found by finding the element in Cx 
that is equal to or just less than some defined fraction, e.g. 0.95. 
 

 
=pos i 0.376  =ε i 5.967      [Eq. I-1] 

 
 
 

Integration has two main sources of error; false positives and negatives.  For this 
example, its error is quite reasonable given the size of its individual sources of 
error. 
 
Scenic View 2: Enhanced Integration Method (posei): 
 
The integration routine can theoretically be improved by calculating the fraction of 
negatives that are in the positive integration region and subtracting that fraction from 
the posi estimate.  The formula is easily derived as 
  

 
 =pos ei 0.346  =ε ei 13.338  [Eq. I-2] 
 

Surprisingly, the error associated with this improvement is higher than the simpler 
integration method. 
 
The error increases because the two sources of error for the Integration method 
partially cancel each other out.  Thus, by removing only the false positive source of 
error, the Enhanced Integration Method error is increased compared to the 
Integration Method.  The integration method works best with symmetric distributions 
and deteriorates rapidly as the distributions become skewed.  The sensitivity to 
distribution shape precludes this method as a robust positive fraction estimator. 
 
Scenic View 3: Dmax Method (posd): 
 
In the 1930’s Andrei Nikolaevich Kolmogorov  and later N Smirnov developed a 
statistic that quantified the difference between two frequency histograms with the 
following design characteristics:  1) no required assumptions about error 
distributions, 2) easy manual calculation, and 3) robust with noisy data (4,5). 
 
The statistic rapidly became one of the most widely used nonparametric tests for 
histogram comparison and eventually was labeled with its author’s names, 
Kolmogorov and Smirnov.  The Kolmogorov-Smirnov or KS statistic is the maximum 
absolute difference, or Dmax, between two cumulative probability distributions.  The 
test histogram cumulative distribution is computed as shown below: 
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T0 = t0 
Tx = Tx-1 + tx  for x>0 
Tx = Tx/tt for all x. 

 
A probability distribution is a histogram normalized with an area of one.  
Presumably, Kolmogorov and Smirnov selected cumulative distributions because 
their successive summations have a powerful smoothing effect on noisy data.  
Figure 4 shows the example test and control cumulative probability distributions and 
the maximum absolute difference, Dmax. 
 

 
Figure 4:  Control and Test cumulative distributions and their maximum difference, 
Dmax. 
 
The KS test was first suggested as a histogram comparison test for flow cytometry 
in 1977 (6) and two years later it was used to detect B-cell clonality in bone marrow 
derived Kappa and Lambda stained histograms (7).  The first hint that Dmax was 
more than just a nonparametric statistic came from the clonality data.  The Kappa-
Lambda sensitivity was estimated to be 10% blasts and its corresponding Dmax 
was 0.10.  As will be seen, this identity was no coincidence. 
 
In 1988 a method called cumulative subtraction (CS,3) was proposed to estimate 
percent positives.  On close inspection, the CS algorithm is equivalent to the 
venerable KS Dmax statistic.   
 

Dx Cx Tx 
pos d max( )D   =pos d 0.336  =ε d 15.971   [Eq. D-1] 

The error associated with this estimate is relatively high and demonstrates a strong 
propensity to underestimate the true positive fraction. 
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Scenic Overlook 
 
In order to understand how Dmax approximates the positive fraction and to improve 
upon its performance, we developed a more general positive fraction-cumulative 
distribution equation. 
 

 
     [Eq. D-2] 

 
A plot of POS(x) versus x (see Fig. 5) demonstrates that for all x>>0, Equation D-2 
estimates the positive fraction.  The plot also shows the smoothing effect of 
cumulative histograms.  By channel 40 the random effects of noisy data have almost 
been eliminated.  With noiseless data, the actual positive fraction and POS(x) are 
identical for all x>0 with Px values>0. 
 

 
Figure 5:  Demonstration of the general positive fraction-cumulative histogram 
theory for predicting positive fraction. 
 
Inspection of Equation D-2 reveals that as Dx approaches its maximum value, Px 
approaches 0 and Cx approaches 1; thus, max(Dx) or Dmax approximates the 
positive fraction.  It is also clear from the formula that Dmax will always 
underestimate the true positive fraction. 
 
The KS test Dmax is more general than just a positive fraction estimator.  The 
absolute value operator makes it an estimator of an additional distribution in either 
of the histograms, thus making it a perfect test for B-cell clonality. 
 
Scenic View 4: Enhanced Dmax Method (posed): 
 
Equation D-2 suggests an easy way to improve the Dmax as a predictor of positive 
fraction.  Since Cx is known, we can divide the Dmax by Cxd to find an improved 
estimate. 
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=pos ed 0.383  =ε ed 6.557    [Eq. D-3] 

 
 
Scenic View 5: Normalized Subtraction Method (posns): 
 
In 1981 a seemingly unrelated method for estimating positive fraction was proposed 
(1,2). In normalized subtraction an amplification factor, k, multiplies the control 
histogram such that within a certain match interval the two histograms, control and 
test, have equivalent areas.  The normalized control histogram is then subtracted 
from the test histogram and the positive difference is the estimated positive 
distribution. 
 
If the amplification factor, k, is evaluated over the interval 0..xd, and the difference 
residue is summed regardless of sign, it can be shown that the estimated positive 
fraction is identical to the Enhanced Dmax technique. 
 

 
 

 
 

 
 

 
Thus, Equation D-2 embraces the seemingly disparate methods of Cumulative 
Subtraction or Dmax, Enhanced Dmax, and Normalized Subtraction. 
 
Scenic View 6: Enhanced Normalized Subtraction Method (posens): 
 
Equation D-2 also suggests that if we could somehow estimate Px, the estimation of 
positive fraction would further improve.  Evaluating equation D-2 at the location of 
maximum difference, xd, yields: 
 

 
 
 

 
The term Pxd defined as is the fraction of positives in the interval 0..xd.  If we 
estimate this fraction by means of a second Dmax (x=xd2) over the interval 0..xd 
between normalized cumulative control and test histograms, we arrive at the formula 
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 =pos ens 0.397 =ε ens 0.545   [ENS-1] 

 
 
Scenic Overview: 
 
If we synthesize thousands of diverse histograms representing a wide variety of 
immunofluorescence histograms (8), we can better appreciate the performance of 
the Dmax, Enhanced Dmax, and Enhanced Normalized Subtraction methods. 
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Figure 6:  Error distributions for D, ED, and ENS methods. 
 
The ENS method has a mean error of -0.85, ED was -2.69, and D was -7.73.  
Head-to-head comparisons show that the ENS method will outperform the D 
method at a rate of at least 100 to 1 and the ED method at 3 to 1. 
 
Summary of Route: 
 
In our journey, we found the simple approach of integration is surprisingly accurate 
given its large false positive and negative errors. With symmetric negative and 
positive distributions, these errors largely cancel each other.  Attempts to improve 
the estimate by accounting for the false positive error, inevitably leads to less 
accurate estimates. 
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The early KS Dmax statistic is really an estimator for the positive fraction.  A general 
formula that embodies this approximation also predicts better ways of estimating 
positive fractions.   The Enhanced Normalized Subtraction method was found to 
have the best analysis characteristics of all the methods described. 
 
Reference: 
 
1.  Hoffman, R. Simple analysis of immunofluorescence histograms.  Abstract 61.  

VIII Converence on Analytical Cytology and Cytometry, Wentworth-by-the-Sea, 
New Hampshire: May 19-25.  Cytometry 1981. 

2.  Bagwell CB:  IMMUNO program, EASY2 Software, Coulter Electronics, Inc., 
1981. 

3.  Overton RW.  Modified histogram subtraction technique for analysis of flow 
cytometry data.  Cytometry 1988;9:619-626. 

4.  Kolmogorov A.  Sulla determinazione empirica di una legge di distribuzione. 
Giornalle dell Instituto Italiano degli Attuari 1933; 4: 1-11. 

5.  Smirnov N.  On the estimation of the discrepancy between empirical curves of 
distribution for two independent samples (In Russia).  Bull Moscow Univ. Intern 
Ser Math, 1939; 2:3-16. 

6.  Young IT. Proof without prejudice: Use of Komogorov-Smirnov test for the 
analysis of histograms from flow systems and other sources.  J Histochem 
Cytochem 1977;25:935-941. 

7.  Ault KA. Detection of small numbers of monoclonal B lymphocytes in the blood 
of patients with lymphoma.  N Engl J Med 1979;300:1401-1405. 

8.  Simulation specifics:  Microsoft Access was used to generate and database the 
analysis results.  Negatives ranged from 200 to 1000, positives from 200 to 
1000.  A Weibull was used to model both distributions. 
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For the control population c, w, and s ranged from 20-40, 10-40, and 2-2.5 and the 
positive population ranged from 50-80, 10-40, and 2-2.5 respectively.  Statistically 
noise was added appropriately to all histograms. 
 


