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Background: Human T cells in the peripheral blood, lymph nodes, and spleen can change their surface and functional \\ . .
markers in response to foreign antigens. These changes can be detected and quantified by cytometric phenotyping of Gatl N g Common markers with CD4 > € uni gque to CD8 >
circulating T-cell subpopulations. Unfortunately, as the number of measurements increase, traditional gating CCR6 CD127 CD16
strategies can become cumbersome. Recently, a new type of analysis paradigm, probability state modeling (PSM), I . E ~ s . . .
was successfully used to better understand circulating CD8 T-cell antigen-dependent progressions (ref 1) and also 10% 5 ; Lt B gt 10°5 10* 10 Mongeyes 2000 A Rl 3 o 8 - Selectlng cells of interest for CyTOF data is
used to automate some cytometry applications (refs 2, 3). This study investigates the use of PSM for further ey 765 1] -. | - 107 103 ~ 1u3- ' ' i 2 10° i UI ':ll basically the same as for fluorescence-based
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Results: The markers: DNA 1, DNA 2, Cell Length, Live/Dead, CD45tot, CD33, CD14, CD8, and CD4 were used to select ol EEEGEP . E o] ! of | ] J‘.LM___H;J ! = v = more Overlap between these populatlons.
events of interest for modeling both CD8+ and CD4+ T-cell populations. CCR7, CD28, and CD45RA stratified events N T S I  —— 0 e I - c ot = cbs6
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CD8+ CD4+ b = = - For CD4+ T cells, CCR7 down-regulates well after
CD4+ population: CCR6, CD24, CD25, CD38, CD27, CD57, CD127, CD161, CXCR3, CXCR5, HLA-DR, ICOS, and PD-1 .. CXCR3 CD85j .
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In January 2014, Verity held a two-day GemStone workshop in Topsham Maine. The attendees were £ d s 2 & H — E. — stage the events.
asked to model CD8 and CD4 T-cell antigen-dependent progressions from a 39-parameter CyTOF data 2 | 2 ] o - - CD57 - CD94
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file kindly provided by Michael Leipold and Holden Maecker at Stanford University (see Fig. 1 for & 8 . 5 A E - A NKT subset of events (CD161+ CD57+/—, CCR6+/—
details). The general idea was to demonstrate how to 1) select for populations of interest, 2) stratify UI e U'| ) was found orimarilv in the CD8+ CM stage
these populations along a progression axis, and 3) examine how other markers modulate as a function 8 3 PERLIE G 3 P Y ge.
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Figure 2A shows the gating strategy for obtaining events that were intact, non-aggregated, viable, CD3+, Lnlrs T SR MR RGE A, (el i ANsts drs Geing SUetasyy I Selscring Iieic, avliregsraslise, s, Color Key Prog ression 5
] i ’ ] ) CD3+, and either CD4+ or CD8+ populations. Panel B shows the analogous GemStone modeling strategy using ten expression : dditi h : k CCR7. CD45RA
and either CD8+ or CD4+. Using this gating strategy as a guide, an analogous set of ten GemStone - - e Xy A e oA el . . addition to the staging markers ) ,
. . . : ' . . profiles (CD3, CD4, CD8, CD14, CD33, CD45tot, Cell_length, Dead, DNA1, and DNA2). Panel C demonstrates the probabilistic — Figure 5. Stage-related changes for CD8+ events. The affected markers were CCR6, CD16, CD24, CD27, CD56, CD57, CD85j, CD94, CD127, CD161,
selection expression pr(?flle.s (EPs) were c.reated (see Fig. 2B). One of the differences bgtween EelE nature of GemStone that accounts for any overlap between the populations such as CD8 and CD4 positive and negative vt [0n (BN 100 | CXCR3, and PD-1. The separate population shown best in the CD161 expression profile was identified as NKT cells. Both CCR6 and CD56 were also and CD28.
and modeling is shown in Fig. 2C. Modeling accounted for the overlap between all defined populations. populations. Accounting for overlap was important for CyTOF data since positive marker cv’s tended to be two or three times e -2 iz found to be mostly positive for this population (see Fig. 6 for details). Many of these stage-related changes are well known (CCR6, CD27, CD57, CD127,
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three times equivalent fluorescence-based cv’s. i population (see Fig. 7) and the last column only significantly changed with stage for the CD8+ population.
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Stratifications: ICOS, and PD-1 were found to modulate with CD4+
| stage in addition to the staging markers CCR7
Figure 3A shows the gating strategy for dividing either CD8+ or CD4+ events into the T-cell stages: Naive| 3A \ 6 \ CD45RA and CD28 ’
(CD45RA+ CCR7+) , Central Memory (CM, CD45RA- CCR7+), Effector Memory (EM, CD45RA- CCR7-), |\ Strategies for Anal yzing Progressions NKT TriCOM Anal YSIS ’ '
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Figure 3B shows the analogous GemStone stratification strategies for CD8 and CD4 T cells. Notice that R — y . ETTXETEE T — CD57,CD127,CD161, CXCR3, and PD-1 modulate
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recent publication (ref 1) demonstrated that for CD8+ T cells, the down-regulation of CCR7 and CD45RA s ‘ g A B C i > ° g
were highly correlated and occurred at the same point in the progression, suggesting that using the ;Ez o 21 + + + 1.53 —
down-regulation of CCR7 as a CM to EM staging marker is inappropriate. Therefore, CD28 was added as S, : %CDS_I_ 9o, + + 096 £ 1 m o7 - Markers CD16, CD56, CD85j, and CD94 seem to
an additional Staging marker for the CD3+T CE”S. - :'52_'_-.--i :'r4:'£.::s..-:=i.'- CD4ERA- N ':'5_;;_-':.-.—. ( : D4ERA- ] - E " & B°'°-124"/*@ mOdU|ate Wlth Only CD8+ T Ce”S.
ey i —1.“..'-'.,.,.....,,...',_,_..,.,..,.,_,_,,.,.,‘_._..,,*:..'1--. H i ;B 0.63 AC*0.217% @y AC*0.124%
o 1w 1w ot o 1w i w ot + + - 0.68 - RES030 i AB* 0 585
In contrast, CD4+ T cells down-regulate CCR7 well after CD45RA down-regulates (see middle overlay’s S M 25 i P2 e st S0} M e YL s i 0.0 3
red arrows) and can therefore be used to define a CM to EM boundary. Both CD28 and CD27 were o ) + + U 5T e = e aen - Markers CD25, CD38, CXCR5, HLA-DR, and 1COS
added to the CD4+ overlay (see middle overlay) to appreciate timing of their down-regulation with __ __ + _ - 1.07 Foseng o G"” 0 seem to modulate only with CD4+ T cells.
respect to CCR7’s down-regulation. Since both CD28 and CD27 down-regulate after CCR7, they might |/ \ \ N 0.85 /ﬂn&)£ e i N
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show the model’s progressions against some popular marker combinations. Notice how difficultitis to | - - + 0.60 AFoorer | ouee Ao |
interpret the timing of CD45RA, CCR7, CD28, and CD27 changes with standard dot-plots. Figure 3C again \\ CDS8+ CDA4+ \\ = . Active zome Index select and stage events based on numerous
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Once events were stratified along the progression axis, all the other 29 markers were examined for E J- LT A s ® divided into concentric circles showing the specific combinations with the marker colors. Not shown in this case is the capability of showing lower than normal expression using hatched fills. The boundaries better understand T-cell biology.
stage-related changes. Figure 4A summarizes the markers that were found to modulate with stage for g - e - DG+ Cer 685 valas FL20T2cel | 28 between low-to-normal as well as normal-to-high are determined statistically. The key at the left shows the same data for just the CM stage in a more familiar format.
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CD8+ events and Fig. 4B for CD4+ events. * ] g2 * s g° E S _ _ _
& oL 8, - B s ] o In this sample, 1.53% of the CD8+ events were CD161+ CD56+ CCR6+ and 1.67% were either CD161+ CD56+ CCR6- or CD161+ CD56- CCR6+. Most of the NKTs were found in the CD8+ CM stage.
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Figure 3. Strategies for analyzing progressions. Panel A shows the gating strategy for dividing either CD8+ or CD4+ events into the T-cell stages: Naive (CD45RA+ CCR7+), Central Memory (CM, CD45RA- CCR7+), Effector C D4+ St ag e' Rel atEd Ch an g ES Refe r e n C eS
Figure 6 shows a TriCOM analysis for this NKT population involving CD161, CCR6, and CD56 (see the Memory (EM, CD45RA- CCR7-), and Terminal Effector (EF, CD45RA+ CCR7-). Panel B shows the analogous GemStone stratification strategies for CD8 and CD4 T cells. Notice that for the CD8+ population (left-most overlay), . .
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Figure 7 shows the CD4+ expression profiles that also changed with stage. The affected markers were In contrast, CD4+ T cells down-regulate CCR7 well after CD45RA down-regulates (see middle overlay’s red arrows) and can therefore be used to define a CM to EM boundary. Both CD28 and CD27 were added to the CD4+ 3 8 8
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Figure 1. CyTOF Immunophenotyping. This assay was performed in the Human Immune Monitoring Center at = i (% 0 b=,
Stanford University. PBMCs were thawed in warm media, washed twice, resuspended in CyFACS buffer (PBS %‘ _ ‘ %‘ CXCR3 = E. o
supplemented with 2% BSA, 2 mM EDTA, and 0.1% soium azide), and viable cells were counted by Vicell. Cells were 5 § ~CD127 - HLA-DR
added to a V-bottom microtiter plate at 1.5 million viable cells/well and washed once by pelleting and resuspension f =4 % " % T E
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were washed twice by pelleting and resuspension with 250 ul FACS buffer. The cells were resuspended in 100 uL PBS ':E T~ : }‘t' oy
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ut m. 'umk;conﬁfmmg ONA Lntderca-ato'r (1:2000 '.Itlj.tlon n PBSP’] DVS”SC'ence;?Ian d'r.]cu atel atlroom tfmperat.ure or Figure 4. Exploration of Stage-Related Marker Changes. Panel A summarizes the 12 expression profiles that were Total [ On € 10000 CD38, CD57, CD127, CD161, CXCR3, CXCR5, HLRA-DR, ICOS, and PD-1. Many of these stage-related =1
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Mi !Q wager efore |n!ect|on |r|1|tot;c e gyTOFh(Din?cuer)ces). Datfa ana |Z5|§ was pler orm;e using F TwJovaBI.iéinOF CD161, CXCR3, and PD-1) and Panel B summarizes the 13 expression profiles that also modulated with CD4+ EM [ On © 2556 further study. The first two columns of markers also modulated with stage for the CD8+ population (see Fig. 5) ‘é . ‘ ‘
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