
The clinical utility of cytometry is likely to change from
manual and subjective gating methods to automatic and
objective methods such as shown in this study.  The FDA is
likely to require this kind of automation in routine clinical
testing in the very near future.

In this study it was demonstrated that it was feasible to
automatically model B-cell lineages defined by numerous
cytometric measurements.  It was also shown that once the
normal components of bone marrow were mathematically
described, it was possible to visualize very small aberrant
populations by the GemStone Heat Map and TriCOM
systems.

This study represents some early steps in leveraging
modeling systems such as probability state modeling in the
general area of minimum residual disease detection.

Phenotypes
Population CD19 SSC CD10 CD34 CD38 CD45 # Abnormalities # Events Percent

Abnormal 1 Normal Normal High High Low Normal 3 57 0.03
Abnormal 2 Normal Normal Low Normal High Normal 2 135 0.07
Abnormal 3 Normal High High Normal Normal High 3 100 0.05

Total B-Cells
200300

In this study thirteen high-dimensional listmode files were used to test automatic analyses of normal
human B-cell lineages in bone marrow.  All thirteen of these files were reported out as being
“uninvolved” for any malignancy involving B-cells.  Table 1 (below) in the Panel 2 describes the
markers, fluorochromes, and total number of events in each file.  All the files were acquired on a BD
LSRII using BD FACSDiva Software Version 4.0 and compensated for signal crossover.

The automation analysis routines (GemStone Version 1.50, Verity Software House) were designed to
perform parameter name matching, making the system capable of full automation with a single template
document even though markers were not always in the same position in the file and not always reported
by the same fluorochrome.

Once a B-cell template document was read into the system, all of the thirteen files were processed with
an algorithm defined by a template model document.  The general logic of this template model is
summarized in Panel 3.  In all thirteen cases, the normal B-cell lineage was successfully modeled within
one to three minutes. Two of the generated overlay plots that summarize all the marker correlations in
the data are shown in Panel 2, bottom. Although the percentages in each stage and the marker
intensities varied greatly from patient to patient, normal B-cells always displayed the same coordination
of changes in marker intensities.  As an example, when CD34 down-regulated there was a slight
increase in CD45, CD19, and CD38 while there was a slight decrease in intensity for CD10.   Other
transitions in the B-cell lineage have similar patterns of reproducible coordination in markers.

All thirteen of the files were independently analyzed by four operators in different laboratories.  The
comparisons between the manual gating and automatic modeling approaches for the staging of the
normal B-cell progressions are shown in Table 2, Panel 4.  The manual gating (see Mean and SD
columns in Table 2) and the automatic modeling  (see Estimate column in Table2) estimates were found
to be reasonably close to each other.

Once normal B-cells are modeled, it is possible to find small populations that for some reason are
different than normal. Very small abnormal populations were introduced into data produced by the
modeling system to simulate the presence of minimum residual disease (see Table 3, Panel 5 for
phenotypes and percentages). The modeling Heat Map shows the presence of these small populations
in each of the three stages of B-cell lineage (Panel 5).  The normal B-cell lineage is shown below the
Heat Map.  The new TriCOM system, Panel 6, also shows these abnormal populations with a graphical
depiction of their respective phenotypes.  This file was sent to four operators in different laboratories to
determine whether these three different abnormal populations could be detected with conventional
gating methods.  The results of their analyses are summarized in Table 4, Panel 5. In general,
conventional gating methods often missed the presence of these abnormal populations.  Also, the
length of time necessary to analyze the data was an order of magnitude greater than the modeling
system.

These results demonstrate that it will be feasible to automatically analyze diverse bone marrow
specimens for the presence of very small aberrant populations that may indicate resistance to current
therapeutic modalities.
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To understand and detect abnormal states in any complex system requires detailed
knowledge of the accompanying normal states. This knowledge of normal versus
abnormal patterns is of particular importance in the discovery of abnormal cells in
tissue specimens by the technology of cytometry. Typically, cytometry experts in the
general area of hematopathology examine a set of bivariate dot plots derived from a
specific reagent panel and look for the presence of cell populations that have unusual
characteristics. This investigation is often guided by ancillary information about the
patient’s clinical history and the results from other tests. These experts know the
normal expression patterns for each pair of markers and can often find small
malignant populations at a sensitivity a few tenths of a percent.

Since the health care industry is being pressured to cut costs without loss of quality,
automating expensive medical tests is likely to play an increasingly important role in
the future.  This study attempts to answer the question of whether a fully autonomous
computational system can mathematically model the complex normal development of
B-cells in bone marrow.  Since B-cell malignancies are the most common form of
leukemia and lymphoma, these results may have general applicability to all clinical
cytometry laboratories.

This study will use Probability State Modeling (PSM) as the central computational
engine because of its ability to scale well with number of measurements and its
accuracy in accounting for population overlap due to inevitable errors in the
measurement process.  Thirteen different listmode files from “uninvolved” bone
marrow specimens will be subjected to this automatic analysis and the results will be
compared with expert analyses of the same data.  After normal B-cells are modeled,
the system detects events that for some reason are at the edges of the normal B-cell
model’s probability distribution and characterizes them.
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Table 1: B-Cell Panels
.

Automated B-Cell
Analysis Algorithm

.

Files Markers/Fluors Total Events
B_BM00006 Kappa (FITC) Lambda (PE) CD19 (PE-TR) CD34 (PerCP-Cy55) CD20 (PE-Cy7) CD45 (PB) CD38 (A594) CD10 (APC) CD5 (APC-Cy7) 269,218
B_BM00007 CD81 (FITC) CD10 (PE) CD34 (PerCP-Cy55) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD138 (APC) CD45 (APC-Cy7) 337097
B_BM00008 Kappa (FITC) Lambda (PE) CD34 (PerCP-Cy55) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-Cy7) 417911
B_BM00009 Kappa (FITC) Lambda (PE) CD34 (PerCP-Cy55) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-Cy7) 422432
B_BM00010 Kappa (FITC) Lambda (PE) CD34 (PerCP-Cy55) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-Cy7) 632595
B_BM00011 Kappa (FITC) Lambda (PE) CD34 (PerCP-Cy55) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-Cy7) 742320
B_BM00012 Kappa (FITC) Lambda (PE) CD34 (PerCP-Cy55) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-Cy7) 522838
B_BM00013 CD9 (FITC) CD34 (PE) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-H7) 171218
B_BM00014 CD9 (FITC) CD34 (PE) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-H7) 359633
B_BM00015 CD9 (FITC) CD34 (PE) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-H7) 321185
B_BM00016 CD9 (FITC) CD34 (PE) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-H7) 290688
B_BM00017 CD9 (FITC) CD34 (PE) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-H7) 371037
B_BM00018 CD9 (FITC) CD34 (PE) CD19 (PE-Cy7) CD20 (V450) CD38 (A594) CD10 (APC) CD45 (APC-H7) 415403
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Table 2: Manual Gating Versus
Automatic Modeling Comparisons

.

%B Cells * %Stg1 ** %Stg2 ** %Stg3 ** %PC *
Gating Modeling Diff Gating Modeling Diff Gating Modeling Diff Gating Modeling Diff Gating

Modelin
g Diff

Files Mean SD Estimate Est-Mean Mean SD Estimate
Est-

Mean Mean SD Estimate
Est-

Mean Mean SD Estimate
Est-

Mean Mean SD Estimate
Est-

Mean
B_BM_00006 12.63 0.12 12.08 0.55 8.82 2.03 11.13 2.32 53.19 4.98 42.60 -10.58 36.68 3.01 46.27 9.58 0.51 0.17 0.50 -0.01
B_BM_00007 11.52 0.15 10.95 0.58 9.36 4.55 8.73 -0.63 58.42 38.39 77.34 18.92 29.06 38.16 13.93 -15.13 0.52 0.12 0.31 -0.21
B_BM_00008 2.99 0.16 2.65 0.33 55.52 0.42 51.79 -3.73 37.54 2.42 45.81 8.27 6.06 2.18 2.41 -3.65 3.40 1.64 1.40 -2.00
B_BM_00009 3.42 0.34 2.87 0.55 8.51 0.81 7.84 -0.67 30.80 2.59 29.35 -1.45 58.93 0.67 62.80 3.87 6.52 5.24 5.13 -1.40
B_BM_00010 5.20 0.23 5.10 0.10 14.15 3.48 10.84 -3.32 71.03 4.35 76.51 5.47 12.72 1.49 12.66 -0.06 0.57 0.39 0.18 -0.39
B_BM_00011 4.11 0.14 3.62 0.48 23.75 0.67 21.54 -2.21 35.82 0.94 34.98 -0.84 38.83 1.11 43.48 4.64 0.32 0.23 0.35 0.03
B_BM_00012 4.94 0.09 4.74 0.19 5.43 0.30 3.98 -1.44 21.20 0.45 19.57 -1.63 71.86 0.93 76.44 4.58 0.37 0.12 0.51 0.14
B_BM_00013 21.04 0.45 19.99 1.05 5.38 0.71 3.69 -1.69 90.53 1.58 94.34 3.81 3.45 0.74 1.97 -1.49 0.04 0.03 0.00 -0.04
B_BM_00014 9.37 0.11 8.60 0.77 8.86 0.61 7.61 -1.25 35.57 0.80 31.88 -3.69 54.88 0.75 60.51 5.63 0.58 0.24 0.08 -0.50
B_BM_00015 3.21 0.23 2.87 0.34 41.92 2.96 48.19 6.27 32.53 3.41 31.60 -0.93 16.28 2.45 20.21 3.93 1.99 0.43 1.04 -0.94
B_BM_00016 0.70 0.04 0.69 0.01 53.15 4.56 74.38 21.23 24.13 0.90 19.07 -5.06 7.07 2.39 6.55 -0.52 1.29 0.79 1.24 -0.04
B_BM_00017 1.81 0.11 1.61 0.21 78.86 2.77 75.51 -3.35 15.48 1.96 23.82 8.34 4.64 1.18 0.67 -3.97 1.94 0.60 1.34 -0.60
B_BM_00018 3.16 0.02 2.96 0.19 42.52 1.46 38.10 -4.42 49.68 1.35 52.29 2.60 6.23 0.27 9.61 3.39 0.17 0.28 0.01 -0.16

Averages 6.47 0.17 6.06 0.41 27.40 1.95 27.95 0.55 42.76 4.93 44.55 1.79 26.67 4.26 27.50 0.83 1.40 0.79 0.93 -0.47

*: Percent of total events in file
**: Percent of classified B-cells

Table 3: Abnormal Populations
.

Model Heat Map
.

Normal B-Cell Progression
.

TriCOM System

How to read the above TriCOM graphic

The x-axis depicts the stages of the progression.  In this B-
cell example there are three stages.  The y-axis quantifies
the number of abnormalities  in each phenotype (see Table
3). The key at the bottom shows how to interpret the
phenotypes of the abnormal populations.  For example,
solid blue (E) represents higher than normal CD38; whereas,
low density blue (e) represents lower than normal CD38.
Reading from the outside ring to the center, the top-left pie
chart shows that  there is an abnormal population that is
high for CD10 and CD34, but low for CD38.  The percentages
above the pie chart shows the percent of Stg1 events with
three abnormalities.  If there were more phenotypes
discovered with three abnormalities, they would be shown
as slices of the pie and their relative percentage shown next
to each segment.  This one graph allows the inspection of
all abnormal phenotypes that may be present in a sample.

Discussion and Summary
Table 4: Gating Results

.

Thanks to the entire Verity team for making this study possible (Ben Hunsberger, Don Herbert, Mark Munson, and Chris Bray). Also, thanks to Margaret Inokuma at BD Biosciences for her help analyzing the files.

Operators # Correct #Incorrect/Missing Time (Hrs)
1 2 1 0.5
2 1 2 1
3 0 3 0.2

Four operators were given the above data to
analyze for abnormal phenotypes using
conventional listmode analysis. In general, most
operators were not able to appreciate the small
clusters of abnormal phenotypes that range in
percentages from 0.02% to 0.05% (see Heat Map
above and TriCOM display in Panel 6.


